Useful links¶
Overall that you might use¶
- Python Documentation
- Python Tutor - see how Python code is executed
- Pip - package installer for Python
- Google Colab
- Kaggle
- Pandas Documentation
- Scikit-learn Documentation
- TensorFlow Datasets
- TensorFlow Hub & TensorFlow Hub tutorials
- TensorFlow Models
- TensorFlow Guide & TensorFlow Tutorials
- Embedding Projector - for NLP, you can see learned embeddings in 3D
- TensorBoard - track your metrics
Useful for creating demos:¶
Scientific papers:¶
Resources to learn:¶
- MIT 6.S191 Introduction to Deep Learning
- TensorFlow resources
- ZTM TensorFlow for Deep Learning
- Machine Learning for Beginners
- IBM Learn Hub
- Free Code Camp Machine Learning with Python Course
- Kaggle Courses
Books:¶
- Forecasting: Principles and Practice
- "Hands-On Machine Learning, with Scikit-Learn, Keras & TensorFlow 2nd edition" by Aurelien Geron, O'relly
- "Advanced Deep Learning with TensorFlow 2 and Keras 2nd edition" by Rowel Atienza, Packt
- "Artificial Intelligence: A Modern Approach 4th edition" by Stuart Russel and Peter Norvig, Pearson
Open data for inspiration:¶
- The official portal for European data
- Latvijas Atvērto Datu Portāls
- UNICEF Data
- NASA
- Earth Engine Data Catalog
- Google Dataset Search
- Google Public Data Explorer
- Registry of Open Data on AWS
- U.S. Goverment's open data
- World Bank Open Data
- The Global Health Observatory
- FiveThirtyEight
- DBpedia
- Yelp Open Dataset
- UC Irvine Machine Learning Repository